Data Series Management: Fulfilling the Need for Big Sequence Analytics

Auditorio San Agustin, DCC UC

There is an increasingly pressing need, by several applications in diverse domains, for developing techniques able to index and mine very large collections of sequences, or data series. Examples of such applications come from social media analytics and internet service providers, as well as from a multitude of scientific domains. It is not unusual for these applications to involve numbers of data series in the order of hundreds of millions to billions, which are often times not analyzed in their full detail due to their sheer size. However, no existing data management solution (such as relational databases, column stores, array databases, and time series management systems) can offer native support for sequences and the corresponding operators necessary for complex analytics.
In this talk, we argue for the need to study the theory and foundations for sequence management of big data sequences, and to build corresponding systems that will enable scalable management and analysis of very large sequence collections. We describe recent efforts in designing techniques for indexing and mining truly massive collections of data series that will enable scientists to easily analyze their data. We discuss novel techniques that adaptively create data series indexes, allowing users to correctly answer queries before the indexing task is finished. Finally, we present our vision for the future in big sequence management research, including the promising directions in terms of storage, distributed processing, and query benchmarks.